Structural Role of Water in a Sodium Phosphate Glass by Neutron Diffraction

U. Hoppe, R. Kranold, D. Stachel^a, A. Barz^a, and C. J. Benmore^b

Universität Rostock, Institut für Physik, D-18051 Rostock

^a Otto-Schott-Institut für Glaschemie, Friedrich-Schiller-Universität Jena, D-07743 Jena

b ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK Present address: Intense Pulsed Neutron Source, Argonne National Laboratory, IL 60439, USA

Reprint requests to Dr. U. H.; Fax: +49 381 4986862, E-mail: Hoppe@physik1.uni-rostock.de

Z. Naturforsch. **59a**, 879 – 887 (2004); received September 17, 2004

Neutron diffraction with isotopic H/D-substitution was used to study the network-modifying effect of water in a $H_2O-Na_2O-2P_2O_5$ glass. The resolved fractions of $P-O_T$ and $P-O_B$ bonds and the O-O coordination number indicate similarity to the specifics of a metaphosphate structure. Thus, oxygen of H_2O added ruptures a P-O-P bridge, increasing the number of terminal oxygens. The combined analysis of the first-neighbour peaks in the correlation functions of the hydrogenated and deuterated samples yields H-O distances of 0.101 and 0.157 nm and H-P distances of 0.223 and 0.250 nm. Such distances are well explained with the formation of $O-H\cdots O$ hydrogen bridges. The corresponding O-O distances superpose with the edge lengths of the PO_4 tetrahedra. Significant fractions of short H-H distances typical of water molecules (0.155 nm) or clustering of hydrogen bridges are not detected. The Na-O coordination number of five is similar to that found for the $NaPO_3$ glass.

Key words: Isotopic Substitution; Neutron Scattering; Hydrogen Bridges; Phosphate Glasses.